
Journal of Computer Security draft printout� ��� Jul ������ ����

IOS Press

�

A SOUND TYPE SYSTEM FOR SECURE FLOW

ANALYSIS

Dennis Volpano
Computer Science Department
Naval Postgraduate School
Monterey� California ������ U�S�A�

Geo�rey Smith
School of Computer Science
Florida International University
Miami� Florida ������ U�S�A�

Cynthia Irvine
Computer Science Department
Naval Postgraduate School
Monterey� California ������ U�S�A�

Abstract

Ensuring secure information �ow within programs in the context of multiple sensi�
tivity levels has been widely studied� Especially noteworthy is Denning�s work in
secure �ow analysis and the lattice model ������� Until now� however� the soundness
of Denning�s analysis has not been established satisfactorily� We formulate Denning�s
approach as a type system and present a notion of soundness for the system that can
be viewed as a form of noninterference� Soundness is established by proving� with
respect to a standard programming language semantics� that all well�typed programs
have this noninterference property�

Keywords� type systems� program security� soundness proofs

�� Introduction

The problem of ensuring secure information �ow within systems having multiple
sensitivity levels has been studied extensively� beginning with the early work of Bell
and LaPadula ���� This was extended by the lattice�model work of Denning �	��
����
who pioneered program certi�cation� an e�cient form of static analysis that could
be easily incorporated into a compiler to verify secure information �ow in programs�
Dennings analysis has been characterized as an extension of an axiomatic logic for
program correctness by Andrews and Reitman ���� Other more recent e�orts have
been aimed at extending the analysis to properly handle language features like



� D� Volpano� G� Smith� C� Irvine

procedures ��	���
� and nondeterminism ���� while others have focused on integrity
analysis only ���������

So far there has not been a satisfactory treatment of the soundness of Den�
nings analysis� After all� we want to be assured that if the analysis succeeds for a
given program on some inputs� then the program in some sense executes securely�
Denning provides intuitive arguments only in ������� Although a more rigorous ac�
count of information �ow in terms of classical information theory is given in ���� no
formal soundness proof is attempted� Andrews and Reitman ��� do not address the
soundness of their �ow logic at all� Soundness is considered in �rb�k ����� but the
treatment depends on an �instrumented semantics� where every value is tagged
with a security class� These classes are updated for values at run time according
to Dennings certi�cation conditions� A similar approach is taken by Mizuno and
Schmidt ����� However� these approaches are unsatisfactory� By modifying the se�
mantics in this way� there is no longer any basis for justifying the soundness of the
analysis� Proving soundness in this framework essentially amounts to proving that
the analysis is consistent with the instrumented semantics� But then it is fair to
ask whether class tags are updated correctly in the instrumented semantics� There
is no justi�cation for tag manipulation in the semantics�

We take a type�based approach to the analysis� The certi�cation conditions of
Dennings analysis ������ are formulated as a simple type system for a deterministic
language� A type system is basically a formal system of type inference rules for
making judgments about programs� They are usually used to establish the type
correctness of programs in a strongly�typed language� for example� Standard ML
����� However� they are not limited to reasoning about traditional forms of type
correctness� They can be regarded� in general� as logical systems in which to reason
about a wide variety of program properties� In our case� the property of interest is
secure information �ow�

Characterizing the analysis as a type system has many advantages� It serves
as a formal speci�cation that cleanly separates the security policies from the al�
gorithms for enforcing them in programs� The separation also admits a notion
of soundness for the analysis that resembles traditional noninterference ���� Intu�
itively� soundness states that variables in a well�typed program do not �interfere�
with variables at lower security levels� This is formalized as a type soundness
theorem and proved� It is interesting to point out that the soundness proof jus�
ti�es a more �exible treatment of local variables�in some cases� there is an im�
plicit �ow to a local variable� but the �ow is actually harmless� so it need not
be rejected� The secure �ow typing rules merge some traditional type correctness
concerns with secure��ow enforcement� Upward information �ows are easily ac�
commodated through subtyping� And �nally� though not addressed in this paper�
the type system can be automated� using standard type inference techniques� to
analyze programs for secure �ows�

We begin with an overview of Dennings lattice model followed by an informal
treatment of the type system� Examples are given to show how the typing rules
are used� Then we turn our attention to a formal treatment of the type system and
prove a soundness theorem with respect to a standard semantics for the language�
Other soundness e�orts will then be discussed along with language extensions and
some directions for future research�



A Sound Type System for Secure Flow Analysis �

�� The Lattice Model of Information Flow

The lattice model is an extension of the Bell and LaPadula model ���� In this model�
an information �ow policy is de�ned by a lattice �SC���� where SC is a �nite set
of security classes partially ordered by �� SC may include secrecy classes� like low
�L� and high �H �� as well as integrity classes� like trusted �T � and untrusted �U ��
where L � H and T � U � There may be combinations of them as well� like HT�

Every program variable x has a security class denoted by x� It is assumed that
x can be determined statically and that it does not vary at run time� If x and y
are variables and there is a �ow of information from x to y then it is a permissible
�ow i� x � y�

Every programming construct has a certi�cation condition� It is a purely syn�
tactic condition relating security classes� Some of these conditions control explicit
�ows while others control implicit �ows� For example� the statement y �� x has
the condition x � y� that is� the �ow of information from the security class of x
to that of y must be permitted by the �ow policy� This is an example of a con�
dition controlling an explicit �ow� The conditions for other constructs� such as if
statements and while loops� control implicit �ows� For example� there is always
an implicit �ow from the guard of a conditional to its branches� For instance� in
the statement

if x � y then z �� w else i �� i � �

there is an implicit �ow from x and y to z and i� So the statement has the
certi�cation condition x� y � z � i where � and � denote least upper bound and
greatest lower bound operators respectively� The lattice property makes it possible
to enforce these conditions using a simple attribute grammar with synthesized
attributes only�

�� An Informal Treatment of the Type System

A type system consists of a set of inference rules and axioms for deriving typing
judgments� A typing judgment� for our purposes� has the form

� � p � �

This judgment asserts that program �or program phrase� p has type � with respect
to identi�er typing �� An identi�er typing is a map from identi�ers to types� it
gives the types of any free identi�ers of p� A judgment follows from the type system
if it is the last in a sequence of judgments where each judgment in the sequence is
an axiom or one that follows from preceding judgments by a type inference rule�

For example� consider a simple type system for integer�valued expressions� It
might contain the following three rules� an axiom � � i � int � which asserts that
every integer literal i has type int� an inference rule

� � x � � if ��x� � �

giving us the type of any free identi�er x� and the inference rule

� � e � int �
� � e� � int

� � e � e� � int



� D� Volpano� G� Smith� C� Irvine

for deducing the types of expressions of the form e � e�� In inference rules� the
judgments above the horizontal line are hypotheses and the judgment below the
line is the conclusion� So if ��z� � int � then

� � z � � � int

is a judgment that follows from the type system� We say z � � is well typed with
respect to � in this case and that it has type int� But if ��z� � bool then the
judgment no longer follows from the system and we say z�� is not well typed with
respect to ��

The preceding example illustrates a traditional type system� Our secure �ow
type system is also composed of types and type inference rules� but now the rules
enforce secure �ow as opposed to data type compatibility� The rules allow secure�
�ow judgments to be made for expressions and commands in a block�structured�
deterministic language�

���� Secure Flow Types

The types of our system are strati�ed into two levels� At one level are the data

types� denoted by � � which are the security classes of SC � We assume that SC

is partially ordered by �� At the other level are the phrase types� denoted by
�� These include data types� which are the types given to expressions� variable
types of the form � var � and command types of the form � cmd � As one would
expect� a variable of type � var stores information whose security class is � or
lower� More novelly� a command c has type � cmd only if it is guaranteed that
every assignment within c is made to a variable whose security class is � or higher�
This is a con�nement property� needed to ensure secure implicit �ows� We extend
the partial order � to a subtype relation which we denote �� The subtype relation
is antimonotonic �or contravariant� in the types of commands� meaning that if
� � � � then � � cmd � � cmd � As usual� there is a type coercion rule that allows a
phrase of type � to be assigned a type �� whenever � � ���

���� Secure Flow Typing Rules

The typing rules guarantee secure explicit and implicit �ows as do certi�cation
rules in the lattice model� Consider� for example� the typing rule for assignment�

� � e � � var �
� � e� � �

� � e �� e� � � cmd

This rule essentially says that in order to ensure that the explicit �ow from e� to
e is secure� e� and e must agree on their security levels� which is conveyed by �
appearing in both hypotheses of the rule� Note� however� that an upward �ow from
e� to e is still allowed� if e � H var and e� � L� then with subtyping� the type of e�

can be coerced up to H and the rule applied with � � H��

� Keep in mind that secrecy and integrity are treated uniformly in our type system
�	��

�� as they are in the lattice model� Examples throughout the paper will be
given for secrecy only� but they could alternatively be stated for integrity�



A Sound Type System for Secure Flow Analysis 	

Notice that in the preceding typing rule� the entire assignment is given type
� cmd � The reason for this is to control implicit �ows� Here is a simple example�
Suppose x is either � or � and consider

if x � � then y �� � else y �� �

Although there is no explicit �ow from x to y� there is an implicit �ow because x
is indirectly copied to y� To ensure that such implicit �ows are secure� we use the
following typing rule for conditionals�

� � e � ��
� � c � � cmd �
� � c� � � cmd

� � if e then c else c� � � cmd

The intuition behind the rule is that c and c� are executed in a context where
information of level � is implicitly known� For this reason� c and c� may only
assign to variables of level � or higher� Although the rule requires the guard e and
branches c and c� to have the same security level� namely � � it does not prevent
an implicit upward �ow from e to branches c and c�� Again subtyping can be used
to establish agreement� but unlike the case with assignment statements� there are
now two ways to get it� The type of e can be coerced to a higher level� or the
types of the branches can be coerced to lower levels using the antimonotonicity of
command types� In some situations both kinds of coercions are necessary� Observe
that no coercions will lead to agreement if there is downward �ow from e� The
typing rule must reject the conditional in this case�

For example� suppose ��x� � ��y� � H var � By the preceding typing rule
for assignment� we have � � y �� � � H cmd and � � y �� � � H cmd � This
means that each statement can be placed in a context where high information is
implicitly known through the guard of a conditional statement� An example is
if x � � then y �� � else y �� �� With � � H� the secure �ow typing rule for
conditionals gives

� � if x � � then y �� � else y �� � � H cmd

So the statement is well typed� as is expected� knowing that since x and y are high
variables� the implicit �ow from x to y is secure� The resulting type H cmd assures
us that no low variable is updated in either branch �no write down�� This would
permit the entire statement to be used where high information again is implicitly
known� Now if ��x� � L var � then the implicit �ow is still secure� but establishing
this fact within the type system now requires subtyping� One option is to use the
antimonotonic subtyping of command types where H cmd � L cmd since L � H�
Each branch then is coerced from type H cmd to L cmd so that we can let � � L
and get

� � if x � � then y �� � else y �� � � L cmd

On the other hand� we might coerce the type of x upward from L to H and let
� � H instead� Then once again the conditional has type H cmd � This would be
our only choice if we had to successfully type the conditional� say� as the branch
of yet another conditional whose guard is high� And �nally� if ��x� � H var and
��y� � L var � then the conditional is not well typed� which is what we would expect
since now the implicit �ow is downward�




 D� Volpano� G� Smith� C� Irvine

if x � � then
letvar y �� � in c

else

letvar y �� � in c�

Figure �� An implicit �ow from x to y

���� Local Variable Declarations

Our core language includes a construct for declaring local variables� A local vari�
able� say x� in our language is declared as

letvar x �� e in c

It creates x initialized with the value of expression e� The scope and lifetime of x is
command c� The initialization can cause an implicit �ow� but it is always harmless�

Consider� for instance� the program fragment in Figure �� for some commands
c and c�� If x is high and each instance of y is low� then it might appear as though
the program should be rejected because there is a downward implicit �ow from x
to y� But if c and c� do not update any low variables� that is� each can be typed
as high commands� then the program is actually secure� despite the downward
�ow� The contents of x cannot be �laundered� via y� To see this� suppose x is
high� Then the rule for typing conditionals given above forces c and c� to be typed
as high commands� By the con�nement property� then� neither c nor c� has any
assignments to low variables and thus y cannot be assigned to any low variables�

���� Type Soundness

We prove two interesting security lemmas for our type system� namely Simple
Security and Con�nement� Simple Security applies to expressions and Con�nement
to commands� If an expression e can be given type � in our system� then Simple
Security says� for secrecy� that only variables at level � or lower in e will have
their contents read when e is evaluated �no read up�� For integrity� it says that
every variable in e stores information at integrity level � � On the other hand� if a
command c can be given type � cmd � then Con�nement says� for secrecy� that no
variable below level � is updated in c �no write down�� For integrity� it states that
every variable assigned to in c can indeed be updated by information at integrity
level � �

These two lemmas are used to prove the type system is sound� Soundness is
formulated as a kind of noninterference property� Intuitively� it says that variables
in a well�typed program do not interfere with variables at lower security levels� That
is� if a variable v has security level � � then one can change the initial values of any
variables whose security levels are not dominated by � � execute the program� and
the �nal value of v will be the same� provided the program terminates successfully�

���� Type Inference

It is possible to check automatically whether a program is well typed by using
standard techniques of type inference� While a detailed discussion of type inference
is beyond the scope of this paper� the basic idea is to use type variables to represent



A Sound Type System for Secure Flow Analysis �

unknown types and to collect constraints �in the form of type inequalities� that the
type variables must satisfy for the program to be well typed� In this way� one can
construct a principal type for the program that represents all possible types that
the program can be given�

�� A Formal Treatment of the Type System

We consider a core block�structured language described below� It consists of
phrases� which are either expressions e or commands c�

�phrases� p ��� e j c

�expressions� e ��� x j l j n j e � e� j e� e� j e � e� j e � e�

�commands� c ��� e �� e� j c� c� j if e then c else c� j
while e do c j letvar x �� e in c

Metavariable x ranges over identi�ers� l over locations �addresses�� and n over
integer literals� Integers are the only values� We use � for false and � for true� and
assume that locations are well ordered�

There are no I�O primitives in the language� All I�O is done through free
locations in a program� That is� if a program needs to �read input� then it does
so by dereferencing an explicit location in the program� Likewise� a program that
needs to �write output� does so by an assignment to an explicit location� Locations
may also be created during program execution due to local variable declarations�
So a partially�evaluated program may contain newly�generated locations as well as
those used for I�O�

The types of the core language are strati�ed as follows�

�data types� � ��� s

�phrase types� � ��� � j � var j � cmd

Metavariable s ranges over the set SC of security classes� which is assumed to be
partially ordered by �� Type � var is the type of a variable and � cmd is the type
of a command�

The typing rules for the core language are given in Figure �� We omit typing
rules for some of the expressions since they are similar to rule �arith�� Typing
judgments have the form

�� � � p � �

where � is a location typing and � is an identi�er typing � The judgment means that
phrase p has type �� assuming � prescribes types for locations in p and � prescribes
types for any free identi�ers in p� An identi�er typing is a �nite function mapping
identi�ers to � types� ��x� is the � type assigned to x by �� Also� ��x � �� is a
modi�ed identi�er typing that assigns type � to x and assigns type ��x�� to any
identi�er x� other than x� A location typing is a �nite function mapping locations
to � types� The notational conventions for location typings are similar to those for
identi�er typings�

The remaining rules of the type system constitute the subtyping logic and are
given in Figure �� Properties of the logic are established by the following lemmas�



� D� Volpano� G� Smith� C� Irvine

�int� �� � � n � �

�var� �� � � x � � var if ��x� � � var

�varloc� �� � � l � � var if ��l� � �

�arith�

�� � � e � ��
�� � � e� � �

�� � � e � e� � �

�r�val�
�� � � e � � var

�� � � e � �

�assign�

�� � � e � � var �
�� � � e� � �

�� � � e �� e� � � cmd

�compose�

�� � � c � � cmd �
�� � � c� � � cmd

�� � � c� c� � � cmd

�if�

�� � � e � ��
�� � � c � � cmd �
�� � � c� � � cmd

�� � � if e then c else c� � � cmd

�while�

�� � � e � ��
�� � � c � � cmd

�� � � while e do c � � cmd

�letvar�

�� � � e � ��
�� ��x � � var � � c � � � cmd

�� � � letvar x �� e in c � � � cmd

Figure �� Typing rules for secure information �ow

Lemma ��� �Structural Subtyping� If � � � ��� then either
�a� � is of the form � � �� is of the form � �� and � � � ��
�b� � is of the form � var and �� � �� or
�c� � is of the form � cmd � �� is of the form � � cmd � and � � � � �

Proof� By induction on the height of the derivation of � � � ��� If the derivation
ends with rule �base� then �a� is true by the hypothesis of the rule� If it ends with
�reflex�� then � � ��� So if � is of the form � � then �a� holds since � is re�exive�
And if � is of the form � var or � cmd � then �b� or �c� hold� respectively�

Now suppose the derivation ends with rule �trans�� Then there is a ��� such
that � � � ��� and � ��� � �� by the hypotheses of the rule� There are three cases�

�� If � is of the form � � then by induction ��� is of the form � �� and � � � ��� So by



A Sound Type System for Secure Flow Analysis �

�base�
� � � �

� � � � �

�reflex� � � � �

�trans�
� � � ��� � �� � ���

� � � ���

�cmd��
� � � � �

� � � cmd � � cmd

�subtype�

�� � � p � ��
� � � ��

�� � � p � ��

Figure �� Subtyping rules

induction again� �� is of the form � � and � �� � � �� And since � is transitive�
� � � ��

�� If � is of the form � var � then by induction ��� � �� So by induction again�
�� � ���� and hence �� � ��

�� If � is of the form � cmd � then by induction ��� is of the form � �� cmd and
� �� � � � So by induction again� �� is of the form � � cmd and � � � � ��� So� since
� is transitive� � � � � �

Finally� suppose the derivation ends with �cmd��� Then � is of the form
� cmd � �� is of the form � � cmd � and � � � � � by the hypothesis of the rule�
By induction� � � � � � tu

Lemma ��� � is a partial order�

Proof� Re�exivity and transitivity follow directly from rules �reflex� and
�trans�� Antisymmetry follows from Lemma ��� and the antisymmetry of �� tu

�� The Formal Semantics

The soundness of our type system is established with respect to a natural semantics
for closed phrases in the core language� We say that a phrase is closed if it has
no free identi�ers� A closed phrase is evaluated relative to a memory �� which is
a �nite function from locations to values� The contents of a location l � dom���
is the value ��l�� and we write ��l �� n� for the memory that assigns value n to
location l� and value ��l�� to a location l� �� l� note that ��l �� n� is an update of �
if l � dom��� and an extension of � otherwise�

The evaluation rules are given in Figure �� They allow us to derive judgments
of the form � � e � n for expressions and � � c � �� for commands� These
judgments assert that evaluating closed expression e in memory � results in integer
n and that evaluating closed command c in memory � results in a new memory ���
Note that expressions cannot cause side e�ects and commands do not yield values�



�� D� Volpano� G� Smith� C� Irvine

�base� � � n� n

�contents� � � l � ��l� if l � dom���

�add�
� � e� n� � � e� � n�

� � e � e� � n� n�

�update�
� � e� n� l � dom���

� � l �� e� ��l �� n�

�sequence�
� � c� ��� �� � c� � ���

� � c� c� � ���

�branch�
� � e� �� � � c� ��

� � if e then c else c� � ��

� � e� �� � � c� � ��

� � if e then c else c� � ��

�loop�
� � e� �

� � while e do c� �

� � e� ��
� � c� ���
�� � while e do c� ���

� � while e do c� ���

�bindvar�

� � e� n�
l is the �rst location not in dom����
��l �� n� � �l�x�c� ��

� � letvar x �� e in c� �� � l

Figure �� The evaluation rules

We write �e�x�c to denote the capture�avoiding substitution of e for all free
occurrences of x in c� and let �� l be memory � with location l deleted from its do�
main� Note the use of substitution in rule �bindvar�� which governs the evaluation
of letvar x �� e in c� A new location l is substituted for all free occurrences of x in
c� The result �l�x�c is then evaluated in the extended memory ��l �� n�� where n is
the value of e� By using substitution� we avoid having to introduce an environment
mapping x to l� One can view �l�x�c as a partially�evaluated command� perhaps
containing other free locations�

�� Type Soundness

We now establish the soundness of the type system with respect to the semantics
of the core language� The soundness theorem states that if ��l� � � � for some
location l� then one can arbitrarily alter the initial value of any location l� such



A Sound Type System for Secure Flow Analysis ��

�r�val��

�� � � e � � var �
� � � �

�� � � e � � �

�assign��

�� � � e � � var �
�� � � e� � ��
� � � �

�� � � e �� e� � � � cmd

�if��

�� � � e � ��
�� � � c � � cmd �
�� � � c� � � cmd �
� � � �

�� � � if e then c else c� � � � cmd

�while��

�� � � e � ��
�� � � c � � cmd �
� � � �

�� � � while e do c � � � cmd

Figure 	� Syntax�directed typing rules

that ��l�� is not a subtype of � � execute the program� and the �nal value of l will
be the same provided the program terminates successfully�

To facilitate the soundness proof� we introduce a syntax�directed set of typing
rules� The rules of this system are just the rules of Figure � with rules �r�val��
�assign�� �if�� and �while� replaced by their syntax�directed counterparts in Fig�
ure 	� The subtyping rules in Figure � are not included in the syntax�directed
system� We shall write judgments in the syntax�directed system as �� � �s p � ��
The bene�t of the syntax�directed system is that the last rule used in the deriva�
tion of a typing �� � �s p � � is uniquely determined by the form of p and of �� For
example� if p is a while loop� then the derivation can only end with rule �while���
as opposed to �while� or �subtype� in the original system� The syntax�directed
rules also suggest where a type inference algorithm should introduce coercions�

Next we establish that the syntax�directed system is actually equivalent to our
original system� First we need another lemma�

Lemma ��� If �� � �s p � � and � � � ��� then �� � �s p � ���

Proof� By induction on the height of the derivation of �� � �s p � ��

If the derivation ends with �� � �s n � � by rule �int�� then by Lemma ��� �� is
of the form � �� and �� � �s n � � � by rule �int��

If the derivation ends with �� � �s e � � var either by rule �var� or �varloc��
then �� � � by Lemma ����

If the derivation ends with �� � �s e � e� � � by rule �arith�� then �� � �s e � �
and �� � �s e� � � � By Lemma ���� �� is of the form � �� So by induction� �� � �s e � � �



�� D� Volpano� G� Smith� C� Irvine

and �� � �s e
� � � �� Thus� �� � �s e � e� � � � by rule �arith�� The cases where the

derivation ends with rule �compose� or �letvar� are similar�

If the derivation ends with �� � �s e � � by rule �r�val��� then there is a type
� �� such that �� � �s e � � �� var and � �� � � � By Lemma ���� �� is of the form � � and
� � � �� Since � is transitive� � �� � � � and so �� � �s e � � � by rule �r�val���

If the derivation ends with �� � �s e �� e� � � cmd by rule �assign��� then
there is a type � �� such that �� � �s e � � �� var � �� � �s e� � � �� and � � � ��� By
Lemma ���� �� is of the form � � cmd and � � � � � Since � is transitive� � � � � ��

and so �� � �s e �� e� � � � cmd by �assign��� Derivations ending with �if�� and
�while�� are handled similarly� tu

Equivalence is now expressed by the following theorem�

Theorem ��� �� � � p � � i� �� � �s p � ��

Proof� If �� � �s p � �� then it is easy to see that �� � � p � �� because each use of
the syntax�directed rules �r�val��� �assign��� �if��� or �while�� can be simulated
by a use of �r�val�� �assign�� �if�� or �while�� followed by a use of �subtype��
For example� a use of �assign��

�� � � e � � var �
�� � � e� � ��
� � � �

�� � � e �� e� � � � cmd

can be simulated by using �assign� to show �� � � e �� e� � � cmd � using �base�
and �cmd�� to show � � cmd � � � cmd � and using �subtype� to show �� � � e ��
e� � � � cmd �

Now suppose that �� � � p � �� We will prove that �� � �s p � � by induction on
the height of the derivation of �� � � p � ��

If the derivation ends with �int�� �var� or �varloc�� then �� � �s p � � is
immediate� and it follows directly by induction if the derivation ends with �arith��
�compose� or �letvar��

If the derivation ends with �r�val�� �assign�� �if�� or �while�� then �� � �
p � � follows by an application of the corresponding syntax�directed rule� using the
fact that � is re�exive�

Finally� suppose the derivation of �� � � p � � ends with �subtype�� Then
by the hypotheses of this rule� there is a type �� such that �� � � p � �� and
� �� � �� By induction� �� � �s p � ��� Thus� �� � �s p � � by Lemma 
��� tu

From now on� we shall assume that all typing derivations are done in the
syntax�directed type system� and therefore shall take � to mean �s �

As �nal preparation� we establish the following properties of the type system
and semantics�

Lemma ��� �Simple Security� If � � e � � � then for every l in e� ��l� � � �

Proof� By induction on the structure of e� Suppose � � l � � by rule �r�val���
Then there is a type � � such that � � l � � � var and � � � � � Now ��l� � � � by rule
�varloc�� so ��l� � � �



A Sound Type System for Secure Flow Analysis ��

Suppose � � e� e� � � � Then � � e � � and � � e� � � � By two uses of induction�
��l� � � � for every l in e� and for every l in e�� So ��l� � � for every l in e� e�� tu

Simple security applies to both secrecy and integrity� In the case of secrecy� it
says that only locations at level � or lower will have their contents read when e is
evaluated �no read up�� So if L � H and � � L� then e can be evaluated without
reading any H locations�

In the case of integrity� it says that if e has integrity level � � then every location
in e stores information at integrity level � � For example� if T � U � where T is
trusted and U untrusted� and � � T � then the lemma states that every location in
e stores trusted information�

Lemma ��� �Con	nement� If �� � � c � � cmd � then for every l assigned to in c�
��l� 	 � �

Proof� By induction on the structure of c� Suppose �� � � l �� e � � cmd by
�assign��� Then there is a type � � such that �� � � l � � � var � �� � � e � � � and
� � � �� By rule �varloc�� ��l� � � �� so ��l� 	 � �

The lemma follows directly by induction if c is the composition of two com�
mands or a letvar command�

Suppose �� � � while e do c� � � cmd by �while��� Then there is a type � �

such that �� � � e � � �� �� � � c� � � � cmd and � � � �� By induction� ��l� 	 � �

for every l assigned to in c�� So� since 	 is transitive� ��l� 	 � for every l
assigned to in c� and hence for every l assigned to in while e do c�� The case
when c is a conditional is handled similarly� tu

Con�nement applies to both secrecy and integrity as well� In the case of
secrecy� it says that no location below level � is updated in c �no write down�� For
integrity� it states that every location assigned to in c can indeed be updated by
information at integrity level � � So� for example� if � � U � then the lemma says
that no trusted location will be updated when c is evaluated�

The following lemma is a straightforward variant of a lemma given in �����

Lemma ��� �Substitution� If �� � � l � � var and �� ��x � � var � � c � � � cmd � then
�� � � �l�x�c � � � cmd �

Lemma ��� If � � c� ��� then dom��� � dom�����

Lemma ��� If � � c � ��� l � dom���� and l is not assigned to in c� then
��l� � ���l��

The preceding two lemmas can be easily shown by induction on the structure
of the derivation of � � c� ��� Now we are ready to prove the soundness theorem�

Theorem ��� �Type Soundness� Suppose
�a� � � c � ��
�b� � � c� ���
�c� 	 � c� 	 ��
�d� dom��� � dom�	� � dom���� and
�e� 	�l� � ��l� for all l such that ��l� � � �

Then 	��l� � ���l� for all l such that ��l� � � �



�� D� Volpano� G� Smith� C� Irvine

Proof� By induction on the structure of the derivation of � � c � ��� Here
we show just three cases� �update�� �loop�� and �bindvar�� The remaining
evaluation rules are treated similarly�

�update�� Suppose the evaluation under � ends with

� � e� n�
l � dom���

� � l �� e� ��l �� n�

and the evaluation under 	 ends with

	 � e� n��
l � dom�	�

	 � l �� e� 	�l �� n��

and the typing ends with an application of rule �assign���

� � l � �� var �
� � e � ���
�� � ��

� � l �� e � �� cmd

There are two cases�

�� �� � � � By the Simple Security Lemma� ��l�� � �� for every l� in e� Since � is
transitive� ��l�� � � for every l� in e� Thus� by hypothesis �e�� ��l�� � 	�l�� for
every l� in e� so n � n�� Therefore� ��l �� n��l�� � 	�l �� n���l�� for all l� such
that ��l�� � � �

�� �� �� � � By rule �varloc�� ��l� � ��� so ��l� �� � � So by hypothesis �e��
��l �� n��l�� � 	�l �� n���l�� for all l� such that ��l�� � � �

�loop�� Suppose � � while e do c � ��� 	 � while e do c � 	�� and the
typing derivation ends with an application of rule �while���

� � e � ���
� � c � �� cmd �
�� � ��

� � while e do c � �� cmd

Again there are two cases�

�� �� � � � By the Simple Security Lemma� ��l� � �� for every l in e� Since �
is transitive� ��l� � � for every l in e� Thus� by hypothesis �e�� ��l� � 	�l�
for every l in e� and hence � � e � n and 	 � e � n� Therefore� either the
evaluation under � ends with

� � e� �

� � while e do c� �



A Sound Type System for Secure Flow Analysis �	

and under 	 with
	 � e� �

	 � while e do c� 	

or it ends under � with

� � e� ��
� � c� ���
�� � while e do c� ��

� � while e do c� ��

and under 	 with
	 � e� ��
	 � c� 	��
	� � while e do c� 	�

	 � while e do c� 	�

In the �rst case� ��l� � 	�l� for all l such that ��l� � � by hypothesis �e�� so
were done� In the second case� by induction� ���l� � 	��l� for all l such that
��l� � � � By Lemma 
�
� dom��� � dom���� and dom�	� � dom�	��� So
by hypothesis �d�� dom���� � dom�	�� � dom���� Thus� by induction again�
���l� � 	��l� for all l such that ��l� � � �

�� �� �� � � By the Con�nement Lemma� ��l� 	 �� for every l assigned to in c�
Thus� for every l assigned to in c� ��l� �� � since otherwise we would have
�� � � since � is transitive� So if l � dom��� and ��l� � � � then l is not
assigned to in c� and hence is not assigned to in while e do c� By Lemma 
���
we have ���l� � ��l� and 	��l� � 	�l� for all l such that ��l� � � � Therefore�
���l� � 	��l� for all l such that ��l� � � by hypothesis �e��

�bindvar�� Suppose the evaluation under � ends with

� � e� n�
l is the �rst location not in dom����
��l �� n� � �l�x�c� ��

� � letvar x �� e in c� �� � l

and� since dom��� � dom�	�� the evaluation under 	 ends with

	 � e� n��
l is the �rst location not in dom�	��
	�l �� n�� � �l�x�c� 	�

	 � letvar x �� e in c� 	� � l

and the typing ends with an application of rule �letvar��

� � e � ���
�� �x � �� var � � c � �� cmd

� � letvar x �� e in c � �� cmd



�
 D� Volpano� G� Smith� C� Irvine

Clearly ��l � ��� � l � �� var by �varloc�� By hypothesis �d� and since l �� dom����
we have l �� dom���� Thus� ��l � ���� �x � �� var � � c � �� cmd � So by Lemma 
�	�
��l � ��� � �l�x�c � �� cmd � Also� dom���l �� n�� � dom�	�l �� n��� � dom���l � �����
To apply induction� we just need to show that

	�l �� n���l�� � ��l �� n��l��

for all l� such that ��l � ����l�� � � � If l� �� l then it follows by hypothesis �e��
Otherwise� if l� � l� then we must show n � n� if �� � � � By the Simple
Security Lemma� ��l��� � �� for every l�� in e� So� if �� � � � then ��l��� � �
for every l�� in e� since � is transitive� Thus by hypothesis �e�� ��l��� � 	�l��� for
every l�� in e� hence n � n�� So by induction� 	��l��� � ���l��� for all l�� such that
��l � ����l

��� � � � Therefore� 	� � l�l��� � �� � l�l��� for all l�� such that ��l��� � � � tu

�� Discussion

The early work of Denning �	��
���� and Andrews and Reitman ��� treated sound�
ness intuitively� More recently� Mizuno and Schmidt ���� and �rb�k ���� have
attempted to give rigorous soundness proofs for Denning�style secure �ow analy�
sis� However� both of these works take as their starting point an �instrumented
semantics�� in which every value is tagged with a security class at runtime� the
security tags are updated at runtime in accordance with Dennings certi�cation
conditions� Soundness then amounts to the issue of whether their static �ow anal�
ysis is consistent with the instrumented semantics� But this approach begs the
question of whether the �ow analysis embodied in the instrumented semantics is�
in fact� correct�

In contrast� we use a completely standard semantics for the language� and
the type soundness theorem gives a precise operational characterization of the
signi�cance of the �ow analysis� it tells us that altering the initial values of locations
of type � cannot a�ect the �nal values of any locations of type � �� provided that
� �� � �� This approach allows us to adopt typing rules whose correctness is not
intuitively obvious� For example� our �letvar� rule allows the program of Figure �
to be typed with x � H and y � L� even though there is an implicit �ow from x to
y� But this is not a problem� because our soundness theorem assures us that the
implicit �ow is harmless� If we had instead used an instrumented semantics� then
our �letvar� rule would essentially be incorporated into the semantics� where its
correctness would have to be taken on faith�

Ban atre et al� ��� also take a noninterference approach to soundness� but they
consider a nondeterministic language� They associate with a program variable v�
a set called the security variable of v� denoted !v� Roughly speaking� it is the set of
all variables whose values can in�uence the value of v� either directly or indirectly�
They describe an axiomatic� information �ow logic for deducing whether a variable
is a member of !v� for some variable v� For example� one can deduce that

�� fx �� !zg y �� z fx �� !yg

A soundness proposition �Proposition �� p� 	� ���� is given that basically says that
if x �� !y� for a given program� then executing the program with any two initial



A Sound Type System for Secure Flow Analysis ��

values of x will produce the same sets of �nal values for y� as long as the program
may terminate successfully under both initial values� However� the proposition is
actually false� The problem is that their language is nondeterministic and although
there may be an execution path that leads to successful termination� other paths
may not terminate� So it is possible to get di�erent sets of �nal values for y� For
instance� consider the statement

�true 
 y �� �

tu

true 
 ��x � � 
 skip�� y �� �

�

The statement is a nondeterministic alternative statement with two guards� each of
which is true� The body of the second guard is a repetitive statement with just one
guard� that being x � �� If S denotes this statement� then one can show� using the
�ow logic� that �� fInitg S fx �� !yg� where Init is de�ned as �x� y
 x �� y � x �� !y�
Yet� the set of �nal values for y when x � � is y � � and y � �� and when x � � is
just y � � because the loop does not terminate�

Denning has used concepts such as uncertainty �entropy� from information
theory to formalize the notion of information �ow in programs ���� Basically� if
a program� executed in state s� yields a state s�� then the execution causes an
information �ow from x to y if new information about x in state s is available
from y in state s�� In other words� we are more certain about the contents of
x knowing y after execution than knowing y before� In this setting� soundness
seems to require an information�theoretic characterization� It is unclear how such a
characterization could be proved with respect to a standard programming language
semantics� Such a semantics does not make explicit notions like uncertainty� We
have demonstrated that it is possible to formulate and prove soundness without
resorting to information theory to get a handle on intuitive ideas like information
�ow� All that one needs to know about what kind of security is guaranteed by our
type system is captured entirely by the type soundness theorem�

���� Core Language Extensions

The core language we consider has been kept simple� perhaps even emasculate� to
better explain our basic proof technique� Although one can imagine many ways to
extend the language� there is an obligation to also extend the type system and to
prove that well�typed programs preserve the security properties of interest� Many
interesting research questions arise� For instance� are there extensions of the type
system to handle other features like concurrency and nondeterminism" If so� what
is the proper notion of soundness� or� in other words� what security guarantees can
be made for all well�typed programs"

Some extensions have straightforward typing rules whose soundness can be
shown with only minor changes to the soundness theorem� Two examples are
procedures and arrays� Adding arrays is fairly easy with variables already in the
language� Procedures� though� require a bit more e�ort� depending on calling
conventions� We have extended the core language with procedures in the style of



�� D� Volpano� G� Smith� C� Irvine

Ada ��� A procedure has the form

proc�in x�� inout x�� out x�� c

where c is a command� We limit the number of parameters to three� one for each
kind of parameter�passing mode� only to simplify the discussion� Procedure types
have the form

� proc���� �� var � �� acc�

where acc is a new antimonotonic type constructor that stands for acceptor in
the spirit of Forsythe ����� An acceptor is a variable that can be assigned to
but not evaluated� This is true of out parameters in Ada �� but not Ada �	�
consequently� acc is not antimonotonic in Ada �	� Type � comes from typing
command c as � cmd � assuming x�� x� and x� have types ��� �� var and �� acc

respectively� Mode in requires a small change in the type soundness theorem but
the proof methodology is basically the same�

Other language features pose more serious problems for our type soundness
theorem� One is the idea of explicit type casting within programs� Palsberg and
�rb�k ���� propose a system for integrity analysis in programs� They introduce a
cast operator called trust that can be used to explicitly coerce an untrusted value
to a trusted value� �Note that the opposite coercion� from trusted to untrusted�
can always be made implicitly� since T � U �� While such a coercion seems useful
pragmatically� including it in the language rules out our type soundness theorem�
It seems quite di�cult to characterize what is being guaranteed by the �ow analysis
with such a coercion�

Another source of di�culty is the proper treatment of nondeterminism� Ob�
serve� for instance� that if we try to extend the core language with a primitive
random number generator rand� � and allow an assignment such as z �� rand � �
to be well typed when z is low� then the soundness theorem no longer holds� �Ex�
ecuting this assignment twice from the same memory may produce di�erent �nal
values for z�� A weakness of traditional noninterference is that it is unable to model
security in nondeterministic systems ��������� So perhaps it is not surprising that
nondeterministic language features also cause a problem� As mentioned above�
Ban atre et al� encountered di�culty when attempting to prove a form of noninter�
ference for nondeterministic programs� New security models� such as Generalized
Noninterference ���� should be explored as potential notions of type soundness for
new type systems that deal with nondeterministic programs�

�� Summary

We have formulated Dennings secure �ow analysis as a type system and proved
it sound with respect to a standard programming language semantics for a core
deterministic language� The type system cleanly separates the speci�cation of
secure �ow analysis from its implementation� We expect the core language and
type system to serve as a basis for provably�secure programming languages�

	� Acknowledgments

This material is based upon activities supported by the National Security Agency
and by the National Science Foundation under Agreements No� CCR�����	�� and



A Sound Type System for Secure Flow Analysis ��

CCR��������� Any opinions� �ndings� and conclusions or recommendations ex�
pressed in this publication are those of the authors and do not necessarily re�ect
the views of the National Science Foundation� We would like to thank the referees
for their helpful comments�

�
� References

�
� G� Andrews� R� Reitman� �An Axiomatic Approach to Information Flow in Pro�
grams�� ACM Transactions on Programming Languages and Systems �� �� 
�����
������

��� J� Ban�atre� C� Bryce� D� Le M�etayer� �Compile�time Detection of Information Flow
in Sequential Programs�� pp� ����� in Proceedings of the European Symposium on

Research in Computer Security� Lecture Notes in Computer Science ���� Springer
Verlag� Berlin� 
��	�

��� D� Bell� L� LaPadula� Secure Computer System� Mathematical Foundations and

Model� MITRE Corp� Technical Report M�	��		� 
����

�	� K� Biba� Integrity Considerations for Secure Computer Systems� MITRE Corp�
Technical Report ESD�TR�������� 
����

��� D� Denning� Secure Information Flow in Computer Systems� Purdue University
Ph�D� Thesis� 
����

��� D� Denning� �A Lattice Model of Secure Information Flow�� Communications of

the ACM ��� �� 
����� �����	��

��� D� Denning� P� Denning� �Certi�cation of Programs for Secure Information Flow��
Communications of the ACM ��� �� 
����� ��	��
��

��� D� Denning� Cryptography and Data Security� Addison�Wesley� 
����

��� J� Goguen� J� Meseguer� �Security Policies and Security Models�� pp� 

��� in
Proceedings of the ���� IEEE Symposium on Security and Privacy� 
����

�
�� R� Harper� �A Simpli�ed Account of Polymorphic References�� Information Pro�

cessing Letters ��� 
��	�� ��
�����

�

� T� Lunt� P� Neumann� D� Denning� R� Schell� M� Heckman� W� Shockley� Secure
Distributed Data Views Security Policy and Interpretation for DMBS for a Class

A� DBMS� Rome Air Development Center Technical Report RADC�TR�����
��
Vol I� 
����

�
�� D� McCullough� �Speci�cations for Multi�level Security and a Hook�up Property��
in Proceedings of the ���� IEEE Symposium on Security and Privacy� 
����

�
�� D� McCullough� �Noninterference and the Composability of Security Properties��
pp� 
���
�� in Proceedings of the ���� IEEE Symposium on Security and Privacy�

����

�
	� J� McLean� �Security Models and Information Flow�� pp� 
���
�� in Proceedings

of the ���	 IEEE Symposium on Security and Privacy� 
����

�
�� M� Mizuno� �A Least Fixed Point Approach to Inter�Procedural Information Flow
Control�� pp� ������� in Proceedings of the ��th National Computer Security

Conference� 
����

�
�� M� Mizuno� A� Oldehoeft� �Information Flow Control in a Distributed Object�
Oriented System with Statically�Bound Object Variables�� pp� ����� in Proceed�

ings of the �	th National Computer Security Conference� 
����



�� D� Volpano� G� Smith� C� Irvine

�
�� M� Mizuno� D� Schmidt� �A Security Flow Control Algorithm and its Denotational
Semantics Correctness Proof�� Formal Aspects of Computing �� �A� 
����� ����
��	�

�
�� P� �rb�k� �Can You Trust Your Data��� pp� ������� in Proceedings of the ���


Theory and Practice of Software Development Conference� Lecture Notes in Com�
puter Science �
�� 
����

�
�� J� Palsberg� P� �rb�k� �Trust in the ��calculus�� in Proceedings of the ���
 Static

Analysis Symposium� Lecture Notes in Computer Science ���� 
����

���� L� Paulson� ML for the Working Programmer� Cambridge� 
��
�

��
� J� Reynolds� Preliminary Design of the Programming Language Forsythe� Carnegie
Mellon University Technical Report CMU�CS����
��� 
����


